Skip to main content

ROM Coal Ore Truck Load-Out Bin

ROM Coal Ore Truck Load-Out Bin

 

This is an example of a 53,000 ft3 (1,500 m3) ROM Coal Ore Truck Load-Out Bin.

Why Conventional Truck Load-Out Bins Suffer from Chronic Bridging and Uncontrolled Discharge

A standard ROM truck load out bin consists of a large conical hopper and silo that is discharged using a very large clamshell gate. Unfortunately, these systems suffer from chronic bridging and flooding from collapsing rat-holes.

 

In summary, a conical hopper is satisfactory bin shape as long as the discharge opening is large and that the hopper is discharged evenly from its entire opening. The challenge with a clamshell gate is that it operates partially open in order to control the flow of discharge. When the opening is not fully live, bridging and the formation of rat-holes should be expected.

Kamengo_Banner
Kamengo_Banner
previous arrow
next arrow

Kamengo’s Solution

The solution to a ROM truck load out bin has two parts.

 

The first part is to choose a bin shape that promotes reliable discharge. Kamengo’s preferred method for a tall, large storage bin handling a moderately difficult flowing material is to use “expanded flow”. Expanded flow uses a combination of mass flow and funnel flow, and is typically the most cost-effective bin shape for a tall and very large storage bin.

 

With expanded flow the bottom of the bin discharges in mass flow and the top of the bin discharges in funnel flow. The benefit of expanded flow is that one is able to benefit from the advantages of both flow patterns while minimizing their drawbacks. The expanded flow hopper shown combines a chisel hopper with a funnel flow cone and circular silo. A benefit of this arrangement is that bin wall loads are handled efficiently, reducing the overall cost of the bin.

 

The second half of the solution is to pair the expanded flow bin with a fully-effective feeder – that is a feeder that withdraws material evenly from its entire infeed opening. This is necessary to achieve mass flow in the lower portion of the bin, and to avoid the formation of rat-holes, which are particularly dangerous for large truck load-out bins. By definition, to achieve mass flow, where the stored material comes down as a single body, the feeder must withdraw material evenly from its entire opening. If the Feeder withdraws material selectively from the bin discharge outlet, sections of material in the bin will be stagnant and rat-holes will form.

 

A great example of a fully-effective feeder is the Kamengo Feeder. In addition to being fully-effective, the Feeder offers consistent metering, and can be made as wide as needed and as long as wanted. As a result, the Kamengo Feeder offers valuable advantages when designing for a difficult flowing material.

Learn More

To learn more about the physics of storage bin and feeder design as well as the root causes of bin plugging, please download our white paper entitled: The Design of Reliable Storage Bins and Feeders for the Mining Industry.