The solution to fixing the silo had two parts:
The first half of the solution is to modify the bin geometry of the silo such that it will promote a first-in, first-out discharge pattern. In this case, Kamengo cut off the bottom portion of the silo, including the cone and replaced it with a plane flow, mass flow hopper and Kamengo Feeder. A plane flow hopper is the most conservative hopper shape.
The new hopper converged to wide and long 6-foot wide by 18-foot long discharge opening. This wide and long opening is required to ensure gravity will always be sufficient to break the strength of the arch that hog fuel would create above the Feeder. In summary, by replacing the cone with the new plane flow hopper, Kamengo fixed the geometry of the silo such that if the Feeder were removed, the silo would self-empty with only the aid of gravity. The minimum geometry required for gravity discharge, including minimum slope angle of the plane flow hopper and minimum discharge opening were all selected based on the flow properties of hog fuel.
The second half of the solution was to pair the plane flow hopper with a fully-effective Feeder – in this case a Kamengo Feeder. A fully-effective feeder is one that withdraws material evenly from its entire opening, which by definition is necessary to actually achieve a mass flow discharge pattern in the hopper. By definition, to achieve mass flow, the bulk solid must descend the storage bin as a single body with all the stored material in motion, and the only way to achieve this is for the feeder to withdraw material evenly from its entire opening. If the Feeder withdraws material selectively from the bin discharge outlet, sections of material in the bin will be stagnant and funnel flow will ensue.
Again, discharging in mass flow is often necessary when handling a difficult flowing bulk solid. What makes the Kamengo Feeder unique is that it can be made as wide as needed and as long as desired. This feature is particularly valuable given that the chosen minimum discharge opening of the silo is 6-foot by 18-foot. To achieve mass flow, the Feeder inlet must match this outlet. This is very difficult to do with conventional technologies, but very easy to achieve with a Kamengo Feeder.